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A B S T R A C T   

Many coevolutionary processes, including host-parasite and host-symbiont interactions, involve one species or 
trait which evolves much faster than the other. Whether or not a coevolutionary trajectory converges depends on 
the relative rates of evolutionary change in the two species, and so current adaptive dynamics approaches 
generally either determine convergence stability by considering arbitrary (often comparable) rates of evolu
tionary change or else rely on necessary or sufficient conditions for convergence stability. We propose a method 
for determining convergence stability in the case where one species is expected to evolve much faster than the 
other. This requires a second separation of timescales, which assumes that the faster evolving species will reach 
its evolutionary equilibrium (if one exists) before a new mutation arises in the more slowly evolving species. This 
method, which is likely to be a reasonable approximation for many coevolving species, both provides straight
forward conditions for convergence stability and is less computationally expensive than traditional analysis of 
coevolution models, as it reduces the trait space from a two-dimensional plane to a one-dimensional manifold. In 
this paper, we present the theory underlying this new separation of timescales and provide examples of how it 
could be used to determine coevolutionary outcomes from models.   

1. Introduction 

Coevolution is ubiquitous in nature and has been implicated in many 
biological phenomena, including diversification (Futuyma and Agrawal, 
2009; Paterson et al., 2010; Thompson, 2009) and the evolution of sex 
(Hamilton et al., 1990; Morran et al., 2011). Coevolving species may be 
mutualistic, such as host-symbiont (Janzen, 1966; Limborg and Heeb, 
2018) or plant-pollinator (Johnson and Anderson, 2010) relationships; 
antagonistic, such as host-parasite (Flor, 1956; Marshall and Fenner, 
1960, 1958) (including brood parasitism (Feeney et al., 2014)) or 
predator–prey (Heiling and Herberstein, 2004; Vermeij and Covich, 
1978) (including herbivory (Ehrlich and Raven, 1964)) relationships; or 
competitive (Leger and Espeland, 2010). Coevolution can lead to rapid 
reciprocal adaptations, but in many cases species evolve at very different 
rates, especially when interactions occur across trophic levels (e.g. plant 
or animal interactions with microbial species (Drew et al., 2021)). 

For example, bacterial or fungal symbionts typically evolve much 
faster than their hosts (Moran et al., 1995) and viral or bacterial para
sites have generation times and population sizes that are orders of 
magnitude faster or larger than their plant or animal hosts, setting the 

stage for much faster adaptive evolution (Bliven et al., 2016; Elena et al., 
2008). This includes RNA viruses of humans, such as coronaviruses and 
influenza viruses, which typically have generation times measured in 
hours with tens of billions of virions per infection, whereas humans have 
generation times measured in decades with fewer individuals in the 
entire human population than virions in a single infected host (Bar-On 
et al., 2020; Sender et al., 2021). Of course, vertebrates can often keep 
pace with parasites through adaptive immunity, which in many cases is 
the more pertinent driver of parasite evolution over shorter timescales, 
but over longer timescales parasites can drive evolution in vertebrate 
populations, leading to coevolution between a host and a much faster 
evolving microbe. Beyond host-microbe interactions, contrasting gen
eration times and population sizes occur in a wide range of other 
ecological relationships, including plant-herbivore (e.g. insect herbi
vores have much shorter lifespans and so evolve much faster than long- 
lived trees (Edmunds and Alstad, 1978; Karban, 1989)), predator–prey 
(e.g. krill and whales (Jarman, 2001; Meredith et al., 2013; Pyenson, 
2017)) and competitive interactions (e.g. fast evolving algae compete 
for space with more slowly evolving corals (Swierts and Vermeij, 2016)). 

One can employ a variety of methods to model coevolutionary 
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dynamics theoretically (Ashby et al., 2019; Buckingham and Ashby, 
2022), including population genetics (Day and Gandon, 2007), quanti
tative genetics (Nuismer et al., 2007), adaptive dynamics (Dieckmann 
and Law, 1996; Geritz et al., 1998; Kisdi, 2006; Metz et al., 1996) and 
oligomorphic dynamics (Sasaki and Dieckmann, 2011). Adaptive dy
namics (also known as evolutionary invasion analysis) is especially 
useful for modelling the long-term evolutionary dynamics of quantita
tive traits, as it naturally incorporates population (ecological) dynamics 
and is relatively straightforward to implement. A key assumption of this 
method is a separation of ecological and evolutionary timescales, so that 
the system reaches its ecological attractor (usually a stable equilibrium 
or limit cycle (Best and Ashby, 2023)) before a new mutation arises. This 
greatly simplifies the analysis because ecological dynamics (for instance, 
changes in population density) can be considered separately to evolu
tionary (trait) dynamics. However, important feedbacks remain between 
the ecological and evolutionary dynamics that play a fundamental role 
in shaping coevolution (Ashby et al., 2019). Separating evolutionary and 
ecological timescales is also a reasonable approximation for many real 
biological systems, as evolutionary dynamics are often, but not always 
(Pelletier et al., 2009), much slower than ecological dynamics. 

Here, we generalise and elaborate on a recent method for separating 
evolutionary timescales in coevolving species (Ashby and Farine, 2022). 
We propose that, for systems where one species typically evolves much 
faster than the other (e.g., due to stark differences in generation times, 
population sizes or mutation rates), one can reasonably introduce a 
second separation of timescales between the evolutionary dynamics of 
the two species. This greatly simplifies the analysis by collapsing 
coevolutionary dynamics in a two-dimensional plane into a one- 
dimensional manifold. In this paper, we will describe this method for 
modelling the coevolution of two species and consider how the results 
compare to existing adaptive dynamics methods. 

2. Methods 

We begin by outlining the classical adaptive dynamics framework for 
two coevolving species, before introducing an approximation using a 
separation of evolutionary timescales between species. For convenience, 
we will use the example of a host-parasite system throughout, although 
these methods may be applied to many other coevolving species. Thus, 
“parasite” may be used interchangeably with “fast evolving species” and 
“host” with “slowly evolving species”. We will only consider the case of 
two species, each with a single evolving trait, but this method could also 
be applied to two coevolving traits within the same species, as long as 
one evolves much faster than the other, or to systems with more than 
two coevolving traits. Note that the rates of evolutionary change in each 
species will depend on the size and frequency of mutations, population 
sizes and the selection gradient. Here, when we refer to a fast evolving 
species (e.g., a parasite), we mean that these factors combine to give a 
much higher rate of evolutionary change than in the slowly evolving 
species. 

2.1. Adaptive dynamics for coevolving species 

The adaptive dynamics framework for two coevolving, asexual spe
cies has been described in detail elsewhere (Dieckmann and Law, 1996; 
Geritz et al., 1998; Kisdi, 2006; Metz et al., 1996), so here we shall only 
give a brief overview. The framework makes two crucial assumptions. 
First, that there is a separation of ecological and evolutionary time
scales, such that a mutation may only occur after the ecological dy
namics have reached an attractor (e.g. an equilibrium or a limit cycle). 
In other words, selection acts relatively quickly so that the fate of a 
mutant is determined before another mutant arises. Second, mutations 
are assumed to have small additive effects, which means that traits are 
modelled as continuous with mutants phenotypically similar to their 
progenitors. Note that even though traits are modelled as continuous, 
mutation effect sizes are assumed to be small but not infinitesimal. This 

allows for outcomes such as evolutionary branching, which cannot occur 
if mutations have infinitesimal effects (Geritz et al., 1998). 

For (initially) monomorphic host (H) and parasite (P) populations, 
with evolvable traits h and p respectively, the invasion fitness of a rare 
mutant hm or pm is given by a function of the form wH(hm, h, p) or 
wP(pm, h, p), where the current resident population determines the 
“environment” that the mutant experiences. The traits evolve in the 

direction of their respective fitness gradients, sH(h, p) = ∂wH
∂hm

⃒
⃒
⃒
hm=h 

and 

sp(h, p) = ∂wP
∂pm

⃒
⃒
⃒
pm=p

, until a pair of co-singular strategies (h*, p*) are 

reached, which satisfy sH(h*, p*) = sP(h*, p*) = 0. The stability of a pair 
of co-singular strategies is determined both in terms of evolutionary 
stability, which tells us whether a rare mutant can invade, and by 
convergence stability, which tells us whether trait values that are suffi
ciently close to (h*, p*) will tend towards this point in the long-term. A 
pair of co-singular strategies is evolutionarily stable for the host if: 

∂2wH

∂h2
m

⃒
⃒
⃒
⃒ hm=h=h*

p=p*

< 0 (1a)  

and is evolutionarily stable for the parasite if: 

∂2wP

∂p2
m

⃒
⃒
⃒
⃒ h=h*

pm=p=p*

< 0 (1b) 

Though convergence stability is relatively straightforward to calcu
late when there is only one evolving trait, it is more difficult when there 
are two or more traits because convergence stability depends on the 
relative rates of evolutionary change (Geritz et al., 1998; Kisdi, 2006). In 
simple systems, one may derive sufficient, but not necessary, conditions 
for convergence. For example, strong convergence stability (Leimar, 2009) 
is the property whereby every coevolutionary trajectory with suffi
ciently small mutational steps will converge to a pair of co-singular 
strategies. Specifically, co-singular strategies are strongly convergence 
stable if the following three conditions all hold: 

∂2wH

∂h2
m
+

∂2wH

∂hm∂h
< 0 (2a)  

∂2wP

∂p2
m
+

∂2wP

∂pm∂p
< 0 (2b)  

(
∂2wH

∂h2
m
+

∂2wH

∂hm∂h

)(
∂2wP

∂p2
m
+

∂2wP

∂pm∂p

)

>
∂2wH

∂hm∂p
∂2wP

∂pm∂h
(2c)  

where all derivatives are evaluated at the co-singular strategies 
(hm = h = h* and pm = p = p*). Since this is a sufficient, but not 
necessary, set of conditions for convergence to (h*, p*), a pair of co- 
singular strategies may not be strongly convergence stable even if 
many coevolutionary trajectories still converge to it. A pair of co- 
singular strategies which is convergence stable and evolutionarily sta
ble for both the host and parasite is called a co-continuously stable strategy 
(co-CSS). 

2.2. Separation of host and parasite evolutionary timescales 

In systems where the rate of evolutionary change in one species (e.g., 
a parasite) is much faster than the other (e.g., a host), we can make a 
second separation of timescales, between host and parasite evolutionary 
dynamics. We therefore have ecological dynamics occurring on a much 
faster timescale than parasite evolution, which in turn occurs on a much 
faster timescale than host evolution. This is a reasonable assumption for 
many host-parasite interactions, where parasite population sizes and 
generation times may be many orders of magnitude larger and shorter, 
respectively, than in the host. We therefore assume that, for a given 
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value of the host trait h, the parasite reaches an evolutionary attractor (if 
one exists) before the next host mutation occurs. 

A singular strategy for the parasite (if one or more singular strategies 
exist) as a function of the host trait, p̃(h), is now found by solving: 

sP(h, p̃(h) ) = 0 (3) 

Such a singular strategy is then evolutionarily stable for the parasite 
if: 

∂2wP

∂p2
m

⃒
⃒
⃒
⃒

pm=p=p̃(h)
< 0 (4)  

and is convergence stable if: 

∂2wP

∂p2
m

⃒
⃒
⃒
⃒

pm=p=p̃(h)
+

∂2wP

∂pm∂p

⃒
⃒
⃒
⃒

pm=p=p̃(h)
< 0 (5) 

Note that these conditions depend on the host trait value, h, but do 
not depend on the rate of evolutionary change in the host, due to the 
second separation of timescales. 

For a given value of the host trait, the long-term trait dynamics of a 
fast-evolving parasite may be: (1) a monomorphic population that tends 
to a continuously stable strategy or a maximum or minimum trait value; 
(2) a polymorphic population arising from evolutionary branching into 
two or more traits, which tend to a set of continuously stable strategies, 
and/or maximum or minimum trait values; (3) directional selection in 
one or more trait values that tend to positive or negative infinity; (4) 
fluctuating selection in one or more trait values (e.g., due to seasonality 
in the ecological dynamics); (5) drift or (6) extinction of one or both 
populations. Here, we focus on scenarios 1–2, as scenarios 3–5 represent 
non-equilibrium evolutionary dynamics for the parasite (and may 
therefore require consideration of Floquet exponents (Ferriere and Fox, 
1995; Ferriere and Gatto, 1995; Geritz et al., 2007; Klausmeier, 2008) or 
stochasticity) and scenario 6 is trivial as extinction of one or both species 
prevents further coevolution. 

2.3. Scenario 1: Monomorphic parasite population 

Suppose that the parasite remains monomorphic and tends to either a 
continuously stable strategy (CSS; if p̃(h) is evolutionarily stable and 
convergence stable), or a maximum or minimum trait value (if the 
fitness gradient at a boundary points towards the boundary). We denote 
the evolved parasite trait by p̂(h) (note that in the case of a CSS, p̂(h) =

p̃(h)). 
The invasion fitness of a rare host mutant is then given by 

ŵH(hm, h) = wH(hm, h, p̂(h) ), with fitness gradient ŝH(h, p̂(h) ) =

∂ŵH
∂hm

⃒
⃒
⃒ hm=h

p=p̂(h)

. The host singular strategy therefore satisfies ̂sH(h*, p̂(h*) ) =

0, and is evolutionarily stable if: 

∂2 ŵH

∂h2
m

⃒
⃒
⃒
⃒ hm=h=h*

p=p̂(h)

< 0 (6)  

and is convergence stable if: 

∂2 ŵH

∂h2
m

⃒
⃒
⃒
⃒ hm=h=h*

p=p̂(h*)

+
∂2 ŵH

∂hm∂h

⃒
⃒
⃒
⃒ hm=h=h*

p=p̂(h*)

< 0 (7) 

Eq. (7) can be re-written in terms of the original host invasion fitness, 
wH, as follows (for derivation see Supplementary Materials): 

∂2wH

∂h2
m
+

∂2wH

∂hm∂h
+

∂2wH

∂hm∂p
dp̂
dh

< 0 (8)  

where all terms are evaluated at hm = h = h* and p = p*. 
Therefore, a co-singular strategy is (at least locally) convergence 

stable when the parasite evolves much faster than the host if both con
ditions (5) and (8) hold at the co-singular strategy. These two conditions 
can be formulated in a number of ways, and in fact are equivalent to 
conditions (2b) and (2c), which are two of the conditions required for 
strong convergence stability (see Supplementary Materials equations 
(S6) to (S13) for derivation). That is, all three of the conditions (2a) to 
(2c) must hold for a co-singular strategy to be strong convergence stable 
(for all rates of evolution), whereas only conditions (2b) and (2c) need 
hold for the co-singular strategy to be convergence stable when the 
parasite evolves much faster than the host. These findings concur with 
the results of Leimar (2009), whose conditions for convergence stability 
can also be shown to reduce to our conditions (2b) and (2c) in the case 
where the parasite evolves arbitrarily quickly relative to the host (see 
Supplementary Materials). 

This formulation of our conditions makes it clear that, if (h*, p*) is a 
co-CSS (or is a boundary point that behaves like a co-CSS) in the classical 
adaptive dynamics framework, then it is also a co-CSS using our sepa
ration of host and parasite evolutionary timescales method. This makes 
sense because strong convergence stability implies that all coevolu
tionary trajectories close to (h*, p*) converge to the co-singular point, 
including those where the parasite evolves much faster than the host. 
The reverse implication does not always hold, however; just because 
coevolutionary trajectories where the parasite has a much faster rate of 
evolutionary change than the host converge to a particular point, it does 
not mean that all other trajectories will. 

Condition (8) may be interpreted geometrically in terms of a phase 
plane (see Fig. 1). The sum of the first two terms, ∂

2wH
∂h2

m
+ ∂2wH

∂hm∂h, represents 
the rate of change of the host component of the fitness gradient arrows 
as we move horizontally through the co-singular strategy. The term ∂2wH

∂hm∂p 

represents the rate of change of the host component of the arrows as we 

move vertically through the co-singular strategy. The term dp̂
dh represents 

the gradient of the parasite nullcline at the co-singular strategy. 
Therefore, if the fitness gradient arrows point to the right on the left of 
the co-singular strategy and point to the left on the right of the co- 
singular strategy then a negative slope of the parasite nullcline pro
motes convergence stability (and vice versa). 

To illustrate the effects of separating evolutionary timescales, 
consider the phase planes in Fig. 1, where the co-singular point is found 
at the intersection of the nullclines for the host (black) and parasite 
(grey) fitness gradients. If the parasite evolves much faster than the host 
(red), then the coevolutionary trajectory rapidly moves to (or directly 
away from) the parasite nullcline and then follows the nullcline (or an 
edge of the phase plane). Convergence stability is determined by 
whether the trajectories move towards (Fig. 1A) or away from (Fig. 1B) 
the parasite nullcline, and then (if they do converge to the nullcline) 
whether they move along the parasite nullcline towards or away from 
the co-singular strategy. 

However, even if all trajectories converge to the co-singular strategy 
when the parasite evolves much faster than the host, all trajectories may 
evolve away from the co-singular strategy (or cycle and therefore never 
approach it) when the rates of evolutionary change in both species are 
comparable (Fig. 1C and D; see also Example 1 below). It is also possible 
for a co-singular strategy to be an attractor of any mutational path with 
comparable rates of evolutionary change but not of any mutational path 
where the parasite evolves much faster than the host (such a co-singular 
strategy is not strong convergence stable, because it is not an attractor of 
all mutational paths). This can lead to a case where the parasite trait is 
initially convergence stable, but as the host trait subsequently evolves 
the trajectory moves to a region where the parasite is not convergence 
stable. This can generate stable cycles in cases where cycling is not seen 
for comparable rates of evolutionary change (Fig. 1E). A co-singular 
strategy may also be convergence unstable for all mutational paths, 
but the relative rates of evolutionary change may determine, for 
instance, whether both traits increase indefinitely or whether one 
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increases while the other falls (Fig. 1F). 
What can we say in general about the nature of the phase plane for 

systems with disparate and similar rates of evolutionary change, and the 
resulting coevolutionary trajectories? Intuitively, when the parasite 
nullcline is an attractor and has a relatively shallow gradient near a co- 
singular point, a relatively small change in the host phenotype does not 
lead to a sudden, large change in the parasite phenotype. Coevolu
tionary trajectories therefore gradually move along the parasite null
cline when the latter species evolves much faster, converging to the 
same co-CSS as in classical adaptive dynamics (Fig. 1A). In contrast, 
when the parasite nullcline has a relatively steep gradient near a co- 
singular point, a relatively small change in the host phenotype leads 
to a sudden large shift in the parasite phenotype, potentially leading to a 
difference in the long-term dynamics (Fig. 1C–E). Examining the 

gradient and convergence stability of the parasite nullcline will there
fore give a strong indication as to whether the long-term dynamics of the 
system with disparate rates of evolutionary change generalise to when 
rates of evolutionary change are more comparable. 

2.4. Scenario 2: Polymorphic parasite population 

If the singular strategy p̃(h) is convergence stable (Eq. (5)) but not 
evolutionarily stable (Eq. (4)), then the parasite will branch into two 
traits (note that since we are essentially dealing with single trait evo
lution due to the separation of host and parasite timescales, mutual 
invasibility is implied (Geritz et al., 1998)). As a branching point is not 
an evolutionary endpoint, we must determine what eventually happens 
to the two parasite traits before we can consider the fate of a host 

Fig. 1. Phase planes showing coevolutionary trajectories when the two species have comparable rates of evolutionary change (blue) and when the parasite evolves 
much faster than the host (red). Double arrows indicate periods of rapid evolution and single arrows indicate slower rates of evolution. In (A) and (B), the long-term 
outcome does not depend on the relative rates of evolutionary change, with both trajectories either converging to (A) or diverging from (B) the co-singular strategy. 
In (C) and (D), the traits converge to the co-singular strategy when the parasite evolves much faster than the host, but when the two species have comparable rates of 
evolutionary change, the traits may increase indefinitely (C) or cycle (D). In (E), both traits converge when the species evolve at comparable rates but cycle when the 
parasite evolves much faster than the host. In (F), both trajectories evolve away from the co-singular strategy, but towards different evolutionary endpoints. The host 
nullcline is shown in black and the parasite nullcline in grey. Circles mark the initial values of the evolving traits for the given trajectories. Note that these phase 
planes were generated manually to demonstrate a range of possible outcomes. 
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mutation. We must therefore form a three species system with one host 
and two parasite species and modify the parasite invasion fitness to 
account for the two resident phenotypes, p1 and p2: wi

P
(
pi

m, h, p1, p2
)
. At 

this point, the analysis proceeds as in the monomorphic scenario to 
determine if there is a pair of co-singular strategies for the parasite 
(p̃1(h), ̃p2(h)), given the current host trait value. If this point exists and is 
evolutionarily stable, then the invasion fitness of a rare host mutant is 

given by ŵH

(

hm, h, p̃1(h), p̃2(h)
)

and the analysis follows the same logic 

as above. If the parasite branches again, then one must modify the 
parasite invasion fitness to account for three resident phenotypes, and so 
on. 

3. Examples 

3.1. Example 1: Differences in convergence stability 

We consider the model of host-parasite coevolution proposed by Best 
et al. (2010). Susceptible hosts (with density S) reproduce at an under
lying rate, a, subject to density-dependent competition, q (infected hosts 
do not reproduce). Disease transmission is also density-dependent with 
transmission rate β. Hosts die naturally at a constant rate, b, but infected 
hosts (with density I) also experience disease-induced mortality, α. We 
assume that there is no recovery from infection for simplicity. The 
ecological dynamics are modelled using the following system: 

dS
dt

= (a − qN)S − bS − βSI (9a)  

dI
dt

= βSI − (α+ b)I (9b) 

We assume that the hosts and parasites have evolvable traits h and p 
respectively, which influence their life-histories through the trade-off 
functions a = a(h) and β = β(h, p) (as in Best et al., 2010). We consider 
the following functional forms for the trade-offs (for simplicity of cal
culations, these are different functional forms to the trade-offs used by 
Best et al. (2010) but have similar shapes and properties): 

a(h) = a0 +(a1 − a0)
h − h1

h0 − h1
+ ε(h − h1)

2 (10a)  

β(h, p) =
1
4

β0(p)(p − h+ 4) (10b)  

β0(p) = β0min +(β0max − β0min)
p − p1

p0 − p1
(10c) 

We assume that h0 ≤ h ≤ h1 and p0 ≤ p ≤ p1 (where h0 = p0 = 0 and 
h1, p1 ≤ 4 to ensure that β ≥ 0). We can see that the transmission rate of 
the parasite depends on the difference between the host and parasite 
traits (p − h) and so these traits can be interpreted as host resistance to 
infection (which comes at a cost to host reproduction, a) and parasite 
infectivity (which increases baseline transmissibility, β0). We let ϕ 
represent the relative mutation rate of the parasite trait (the parasite 
mutates ϕ times faster than the host). 

Analytical calculations (given in the Supplementary Materials) show 
that, at any co-singular strategy, the parasite is always evolutionarily 
stable, whereas the host may be evolutionarily stable or unstable, 
depending on parameter values (hence branching may occur in the host 
trait). The parasite is always convergence stable when evolving quickly 
relative to the host, no matter the value of the host trait, and the host 
may also be convergence stable (depending on parameter values). 
Strong convergence stability of the co-singular strategy is not 
guaranteed. 

These conditions mean that we can find parameter values (see 
Table S1) for which the co-singular strategy is not strong convergence 
stable (and moreover the traits do not converge when the rates of 
evolutionary change in the host and parasite are comparable), but where 

both host and parasite traits are convergence stable when the parasite is 
evolving quickly relative to the host (Fig. 2). In this particular case, the 
host and parasite traits converge to a branching point when the parasite 
evolves much faster than the host (Fig. 2A and B). When the host and 
parasite have comparable rates of evolutionary change, however, their 
traits do not converge to their co-singular strategy and instead both tend 
to zero (Fig. 2C and D). 

This example demonstrates that considering only the case of com
parable rates of evolutionary change, or considering sufficient (but not 
necessary) conditions like strong convergence stability, may miss key 
predictions. In this case, both methods would conclude that the co- 
singular strategy is not convergence stable, even though coevolu
tionary trajectories do converge whenever the parasite evolves suffi
ciently faster than the host. Therefore, if there is reason to believe that 
the parasite should evolve much faster than the host, separating the 
evolutionary timescales of the two species provides a more realistic 
prediction. 

3.2. Example 2: Differences in branching 

Svennungsen and Kisdi (2009) consider the evolution of parasite 
virulence (disease-induced mortality, α) subject to a trade-off with 
transmissibility, β(α) (Svennungsen and Kisdi, 2009). Their model as
sumes that all hosts reproduce at a constant rate, b, and experience both 

Fig. 2. Simulations showing the case where trajectories converge to the co- 
singular strategy when the parasite evolves much faster than the host (A & B; 
ϕ = 100) but where the trajectories do not converge to the co-singular strategy 
when the host and parasite have comparable rates of evolutionary change (and 
hence the co-singular strategy is not strong convergence stable; C & D; ϕ = 1). 
Parameters used are as in Table S1. 
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density-independent and density-dependent intrinsic mortality, given 
by the parameters A and B, respectively. Disease transmission is density- 
dependent and infected hosts experience disease-induced mortality. 
These ecological dynamics are described by the following system: 

dS
dt

= bN − β(α)SI − (A+BN)S (11a)  

dI
dt

= β(α)SI − (A+BN)I − αI (11b)  

where N is the total host population density and the trade-off function is 
given by: 

β(α) = cα
a + α

(

1 − Ke−
(α− α)2

σ2

)

(12) 

This model has been shown to exhibit branching in virulence for a 
variety of parameter values (Svennungsen and Kisdi, 2009). 

We can extend this model to consider coevolution with host resis
tance, r, subject to a trade-off with reproduction, b. To do this, we 
introduce the following functions: 

c(r) = c0(1 − r) (13a)  

b(r) = b0

⎛

⎝1 −
cb

1

(
1 − ecb

2r
)

1 − ecb
2

⎞

⎠ (13b)  

with c = c(r) in Eq. (12) corresponding to the level of host susceptibility 
and b = b(r) in Eq. (11a) corresponding to the reproduction cost asso
ciated with resistance. We let ϕ represent the relative mutation rate of 
the parasite trait (the parasite mutates ϕ times faster than the host). 

The resistance trait, r, varies between zero (no resistance) and one 
(full resistance). When r = 0, we regain the original system with b = b0 
and c = c0. As host resistance increases, the transmission rate between 
hosts, β, falls until complete resistance is reached (when r = 1, no 
transmission occurs). As resistance increases, host reproduction also 
falls (reaching a minimum level b = b0

(
1 − cb

1
)

when r = 1). A summary 
of model parameters and variables is given in Table S2. 

If host resistance is initially low enough and evolves sufficiently 
slowly relative to the parasite, then we know that parasite virulence can 
branch into two distinct phenotypes (Svennungsen and Kisdi, 2009). 
However, if the host and parasite have comparable rates of evolutionary 
change then branching does not necessarily occur for the same param
eter values (Fig. 3). Even though the conditions for evolutionary stability 
of a co-singular strategy are the same for both the traditional adaptive 
dynamics framework (Eq. (1a)) and our new separation of evolutionary 
timescales method (Eqs. (4) and (6)), the incidence of branching does 
not need to be the same for all rates of evolutionary change. This is 
because it is possible for the only co-singular strategy to be a co-CSS (and 
hence when rates evolutionary change are comparable both species will 
evolve towards it and not branch) but for some points along the parasite 
nullcline far from the co-CSS to be evolutionarily unstable (and hence 
when the parasite evolves sufficiently fast, it may branch before the host 
has mutated). Whether the rates of evolution are disparate or compa
rable can also have a significant quantitative effect on the evolutionary 
equilibrium of the traits (e.g. Fig. 3A and C). 

4. Discussion 

In many coevolving systems, especially those that involve more than 
one trophic level, evolution may proceed at very different rates within 
each species (Moran et al., 1995). This has important implications from 
a theoretical perspective, because coevolutionary convergence stability 
in adaptive dynamics depends on the relative rates of evolutionary 
change in the coevolving species (Dieckmann and Law, 1996; Marrow 
et al., 1996; Matessi and Di Pasquale, 1996). In this paper, we have 

shown how modelling the coevolution of two species on separate 
evolutionary timescales can greatly simplify model analysis and provide 
results which are more closely tailored to systems where species have 
contrasting rates of evolutionary change. 

The relative rates of evolutionary change of two coevolving species 
can have a significant impact on coevolutionary outcomes (Dieckmann 
and Law, 1996; Marrow et al., 1996; Matessi and Di Pasquale, 1996). 
While some studies do consider the effect of varying relative rates of 
evolutionary change on coevolutionary dynamics (Best et al., 2010), 
many do not. Instead, models that use the adaptive dynamics framework 
typically either assume arbitrary rates of evolutionary change (e.g., Best 
et al., 2008; Law et al., 2001; Rafaluk-Mohr et al., 2018) or restrict 
analysis to cases where there is strong convergence stability (i.e., 
convergence stability holds for all rates of evolutionary change) (Best 
et al., 2009). Comparable rates of evolutionary change may be a good 
approximation for some biological systems (Nair et al., 2019; Naureen 
et al., 2020; Pollock et al., 2021), but in cases where species have very 
different evolutionary timescales (as is often true in host-microbe re
lationships), if similar rates are used in modelling then theoretical re
sults may represent a significant departure from the real dynamics of 
natural populations. 

Our approach considers the limit of rapid evolution in one species, 
where it reaches an evolutionary endpoint (if one exists) before a mu
tation arises in the other species. This additional separation of timescales 
is an extension to the standard separation of ecological and evolutionary 

Fig. 3. Simulations showing the case where branching occurs when the para
site evolves much faster than the host (A & B; ϕ = 20) but where the co- 
singular strategy is continuously stable (a co-CSS) when the host and parasite 
have comparable rates of evolutionary change (C & D; ϕ = 1). Parameters used 
are as in Table S2. 
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timescales in adaptive dynamics, but also parallels other examples of 
separate timescales. For example, Fortelius et al. considered the effects 
of slow climatic change on evolution by introducing an additional sep
aration of evolutionary and geological timescales into an adaptive dy
namics model (Fortelius et al., 2015a, 2015b). Our approach, however, 
is the first to explicitly consider separating two evolutionary timescales 
based on different rates of adaptation across species. This method had 
previously been applied to a model of the coevolution of animal sociality 
and parasite virulence (Ashby and Farine, 2022) but here we have 
generalised the method and provided greater analytical details (e.g., 
conditions for convergence stability). Naturally, this method will pro
vide a better approximation to biological systems which have greater 
differences between the rates of evolutionary change of the two species. 
Furthermore, the approximation is likely to generalise to comparable 
rates of evolutionary change when the nullcline for the fast evolving 
species has a relatively shallow gradient and is convergence stable. 

If rates of evolutionary change are unknown for a given system, then 
one can only derive necessary or sufficient conditions for convergence 
stability or branching (Kisdi, 2006; Leimar, 2009). For instance, strong 
convergence stability is useful for proving that all coevolutionary tra
jectories tend to a particular point in trait space, but many of these 
trajectories will typically be unrealistic (e.g., parasites evolving much 
slower than their hosts). It is generally not important to know whether a 
particular result holds for all rates of evolutionary change, only whether 
it will hold for the typical rates of evolutionary change of the species in 
question (or the most likely rates of evolutionary change if they are 
unknown). In cases where one species is likely to evolve much faster 
than the other (e.g., host-parasite systems), separating their evolu
tionary timescales not only simplifies the analysis but may provide more 
realistic results by approximating the rapid evolution of one species. 

There are two key advantages of our separation of evolutionary 
timescales method. First, our approximation gives a more straightfor
ward definition of convergence stability when one species is known to 
evolve much faster than the other, rather than one which relies on 
relative rates of evolutionary change. Second, it is less computationally 
expensive because we are effectively only considering a one- 
dimensional manifold within a two-dimensional trait space. Rather 
than having to calculate the fitness gradients for every possible pair of 
traits, we only need to find them along the nullcline of the faster- 
evolving species. Together, these advantages mean that our method 
greatly simplifies and speeds up the analysis of coevolutionary models. 
Even if one is generally interested in a wide range of rates of evolu
tionary change, our method offers an efficient means of testing what 
happens when differences in these rates are large. Furthermore, the 
methods proposed herein could be readily extended to consider addi
tional separations of timescales across trophic levels (e.g., hosts, para
sites and hyperparasites (Wood and Ashby, 2023)) or the coevolution of 
multiple traits in each species. For instance, multiple traits in a host 
organism (such as different resistance or tolerance mechanisms) may 
evolve on similar timescales while multiple traits in the parasite (such as 
mortality and sterility virulence) evolve much more quickly. In this case 
we could make the assumption that all parasite traits reach their co- 
evolutionary endpoints before any new mutations arise in the host. 

However, this method is clearly not appropriate for all coevolving 
species. We have shown that, in some cases, separating evolutionary 
timescales produces qualitatively and quantitatively different evolu
tionary outcomes to when species have comparable rates of evolutionary 
change. As such, this method is more suitable than others for modelling 
systems where one species evolves much faster than the other, but is not 
suitable for modelling systems in which the species evolve on similar 
timescales (e.g., in microbial communities, such as bacteria-phage 
coevolution). Still, our method offers a relatively straightforward test 
for determining whether results which assume comparable (or arbitrary) 
rates of evolutionary change still apply when one species evolves much 
faster than the other, and so will be especially beneficial in scenarios 
restricted to plants/animals coevolving with microorganisms (e.g., 

parasite-mediated sexual selection/conflict Ashby, 2020; Ashby and 
Boots, 2015; Hamilton and Zuk, 1982; Pirrie et al., 2022; Wardlaw and 
Agrawal, 2019). 

Overall, it is important to consider relative rates of evolutionary 
change when modelling the coevolution of two species. If rates of 
evolutionary change are likely to be similar, then it is important that the 
analysis is not over-simplified and the approximation presented herein 
may not be appropriate. However, if one species is known (or is likely) to 
evolve much faster than the other, then our method can greatly simplify 
the analysis and ensure more realistic predictions. 
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Best, A., White, A., Kisdi, É., Antonovics, J., Brockhurst, M.A., Boots, M., 2010. The 
evolution of host-parasite range. Am. Natural. 176, 63–71. https://doi.org/10.1086/ 
653002. 

Bliven, K.A., Maurelli, A.T., Kudva, I.T., Cornick, N.A., 2016. Evolution of bacterial 
pathogens within the human host. Microbiol. Spectr. 4 (1) https://doi.org/10.1128/ 
microbiolspec.vmbf-0017-2015. 

Buckingham, L.J., Ashby, B., 2022. Coevolutionary theory of hosts and parasites. J. Evol. 
Biol. 35, 205–224. https://doi.org/10.1111/jeb.13981. 

Day, T., Gandon, S., 2007. Applying population-genetic models in theoretical 
evolutionary epidemiology. Ecol. Lett. 10, 876–888. https://doi.org/10.1111/ 
j.1461-0248.2007.01091.x. 

Dieckmann, U., Law, R., 1996. The dynamical theory of coevolution: a derivation from 
stochastic ecological processes. J. Math. Biol. 34 (5-6), 579–612. 

Drew, G.C., Stevens, E.J., King, K.C., 2021. Microbial evolution and transitions along the 
parasite–mutualist continuum. Nat. Rev. Microbiol. 19, 623–638. https://doi.org/ 
10.1038/s41579-021-00550-7. 

Edmunds, G.F., Alstad, D.N., 1978. Coevolution in insect herbivores and conifers. Science 
199 (4332), 941–945. 

Ehrlich, P.R., Raven, P.H., 1964. Butterflies and plants: a study in coevolution. Evolution 
(NY) 18 (4), 586–608. 

L.J. Buckingham and B. Ashby                                                                                                                                                                                                              

https://doi.org/10.1016/j.jtbi.2023.111688
https://doi.org/10.1016/j.jtbi.2023.111688
https://doi.org/10.1111/evo.13883
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0010
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0010
https://doi.org/10.1101/2020.10.02.323451
https://doi.org/10.1101/2020.10.02.323451
https://doi.org/10.1016/j.jtbi.2018.12.031
https://doi.org/10.7554/eLife.57309
https://doi.org/10.1098/rstb.2022.0006
https://doi.org/10.1098/rstb.2022.0006
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0035
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0035
https://doi.org/10.1086/598494
https://doi.org/10.1086/653002
https://doi.org/10.1086/653002
https://doi.org/10.1128/microbiolspec.vmbf-0017-2015
https://doi.org/10.1128/microbiolspec.vmbf-0017-2015
https://doi.org/10.1111/jeb.13981
https://doi.org/10.1111/j.1461-0248.2007.01091.x
https://doi.org/10.1111/j.1461-0248.2007.01091.x
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0065
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0065
https://doi.org/10.1038/s41579-021-00550-7
https://doi.org/10.1038/s41579-021-00550-7
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0075
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0075
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0080
http://refhub.elsevier.com/S0022-5193(23)00285-0/h0080


Journal of Theoretical Biology 579 (2024) 111688

8

Elena, S.F., Agudelo-Romero, P., Carrasco, P., Codoñer, F.M., Martín, S., Torres- 
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Kisdi, É., 2006. Trade-off geometries and the adaptive dynamics of two co-evolving 
species. Evol. Ecol. Res. 8, 959–973. 

Klausmeier, C.A., 2008. Floquet theory: a useful tool for understanding nonequilibrium 
dynamics. Theor. Ecol. 1, 153–161. https://doi.org/10.1007/s12080-008-0016-2. 

Law, R., Bronstein, J.L., Ferrière, R., 2001. On mutualists and exploiters: Plant-insect 
coevolution in pollinating seed-parasite systems. J. Theor. Biol. 212, 373–389. 
https://doi.org/10.1006/jtbi.2001.2383. 

Leger, E.A., Espeland, E.K., 2010. Coevolution between native and invasive plant 
competitors: implications for invasive species management. Evol. Appl. 3, 169–178. 
https://doi.org/10.1111/j.1752-4571.2009.00105.x. 

Leimar, O., 2009. Multidimensional convergence stability. Evol. Ecol. Res. 11, 191–208. 
Limborg, M.T., Heeb, P., 2018. Coevolution of hosts and their microbiome. Genes (Basel) 

9. https://doi.org/10.3390/genes9110549. 
Marrow, P., Dieckmann, U., Law, R., 1996. Evolutionary dynamics of predator-prey 

systems: an ecological perspective. J. Math. Biol. 34 (5-6), 556–578. 
Marshall, I.D., Fenner, F., 1958. Studies in the epidemiology of infectious myxomatosis of 

rabbits: V. Changes in the innate resistance of Australian wild rabbits exposed to 
myxomatosis. J. Hygiene 56 (2), 288–302. 

Marshall, I.D., Fenner, F., 1960. Studies in the epidemiology of infectious myxomatosis of 
rabbits: VII. The virulence of strains of myxoma virus recovered from Australian wild 
rabbits between 1951 and 1959. J. Hygiene 58 (4), 485–488. 

Matessi, C., Di Pasquale, C., 1996. Long-term evolution of multilocus traits. J. Math. Biol. 
34 (5-6), 613–653. 

Meredith, R.W., Gatesy, J., Emerling, C.A., York, V.M., Springer, M.S., Zhang, J., 2013. 
Rod monochromacy and the coevolution of Cetacean retinal opsins. PLoS Genet 9 
(4), e1003432. 
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