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Spatially structured eco-evolutionary
dynamics in a host-pathogen interaction
render isolated populations vulnerable to
disease

Layla Höckerstedt 1,6,7, Elina Numminen1,7, Ben Ashby2,3,7, Mike Boots 2,4,
Anna Norberg 5 & Anna-Liisa Laine 1,5

While the negative effects that pathogens have on their hosts are well-
documented in humans and agricultural systems, direct evidence of pathogen-
driven impacts in wild host populations is scarce and mixed. Here, to deter-
mine how the strength of pathogen-imposed selection depends on spatial
structure, we analyze growth rates across approximately 4000 host popula-
tions of a perennial plant through time coupled with data on pathogen
presence-absence. We find that infection decreases growth more in the iso-
lated than well-connected host populations. Our inoculation study reveals
isolated populations to be highly susceptible to disease while connected host
populations support the highest levels of resistance diversity, regardless of
their disease history. A spatial eco-evolutionary model predicts that non-
linearity in the costs to resistance may be critical in determining this pattern.
Overall, evolutionary feedbacks define the ecological impacts of disease in
spatially structured systems with host gene flow being more important than
disease history in determining the outcome.

According to coevolutionary theory, hosts may evolve resistance
under pathogen-imposed negative frequency-dependent selection
(NFDS), whereby rare host genotypes have an advantage over the
common ones1,2. The underlying assumptions of coevolutionary the-
ory are the strong negative fitness effect of infection, with disease-free
individuals outperforming infected ones3, and costs of resistance that
are central to maintenance of polymorphism within populations4.
While consistent negative effects of pathogens on their host popula-
tions are well documented in humans and agricultural systems5,6,
direct evidence of pathogen-driven ecological and evolutionary
change in thewild is scarce andmixed3,7–11. The theoretical expectation

is that the selective importance of disease is directly correlated with
the frequency and severity of epidemics12. However, our ability to
quantify the strength of pathogen-imposed selection in natural
populations is limited by few available systematic spatio-temporal
data on pathogen occurrence across a sufficient number of host
populations.

Spatial structure and heterogeneity supported by natural host
populations is in stark contrast to human-managed systems that are
typically highly conductive to disease transmission due to large popu-
lation sizes, high densities and low genetic variability13. Not surprisingly,
studies focusing on wild pathosystems have revealed highly variable

Received: 4 February 2022

Accepted: 27 September 2022

Check for updates

1Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, 00014 University of Helsinki, Helsinki, Finland.
2Department of IntegrativeBiology,University ofCalifornia, Berkeley,CA94720,USA. 3Department ofMathematics, SimonFraserUniversity, Burnaby, BCV3H
5J5, Canada. 4Biosciences, University of Exeter, Penryn TR10 9EZ, UK. 5Department of Evolutionary Biology and Environmental Studies, University of Zürich,
CH-8057, Zurich, Switzerland. 6Present address: Finnish Meteorological Institute, FI-00101, Helsinki, Finland. 7These authors contributed equally: Layla
Höckerstedt, Elina Numminen, Ben Ashby. e-mail: anna-liisa.laine@uzh.ch

Nature Communications |         (2022) 13:6018 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6196-0839
http://orcid.org/0000-0001-6196-0839
http://orcid.org/0000-0001-6196-0839
http://orcid.org/0000-0001-6196-0839
http://orcid.org/0000-0001-6196-0839
http://orcid.org/0000-0003-3763-6136
http://orcid.org/0000-0003-3763-6136
http://orcid.org/0000-0003-3763-6136
http://orcid.org/0000-0003-3763-6136
http://orcid.org/0000-0003-3763-6136
http://orcid.org/0000-0002-3520-1043
http://orcid.org/0000-0002-3520-1043
http://orcid.org/0000-0002-3520-1043
http://orcid.org/0000-0002-3520-1043
http://orcid.org/0000-0002-3520-1043
http://orcid.org/0000-0002-0703-5850
http://orcid.org/0000-0002-0703-5850
http://orcid.org/0000-0002-0703-5850
http://orcid.org/0000-0002-0703-5850
http://orcid.org/0000-0002-0703-5850
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33665-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33665-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33665-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33665-3&domain=pdf
mailto:anna-liisa.laine@uzh.ch


disease prevalence levels. Moreover, local pathogen populations are
typically ephemeral, persisting regionally as metapopulations through
extinction and colonization events of local host populations14–17. Even
when infection takes place, the fitness consequences—and the coevo-
lutionary outcomes18—may vary depending on the genetic composition
of the host and pathogen populations and their environment, either
directly or via GenotypeHOST × GenotypePATHOGEN × Environment—
interactions19,20. Moreover, hosts in wild populations may suffer
increased mortality or reduced reproduction irrespective of their
infection status due to other factors such as extreme weather21. Hence,
remarkably little is understood of how pathogens impact the fitness of
their host populations in the wild.

There is increasing evidence that host-pathogen dynamics, both
epidemiological and evolutionary, may be shaped by the spatial
structure of the interaction13,22–24. Encounter rates between hosts and
their pathogens are expected to be heavily influenced by connectivity
to other populations, and the key metapopulation processes—gene
flow, extinction, and colonization dynamics—are expected to con-
tribute to the genetic structure of both the colonization dynamics, and
the arrival of novel genetic variation into local populations13. As long as
rates of migration are low enough to not homogenize local popula-
tions, increasing immigration is expected to increase the diversity and
evolutionary potential of both host and pathogen populations25. While
measuring migration rates in natural populations is difficult26, popu-
lation connectivity, measured as the Euclidian distances separating
populations and calibrated by the species dispersal capacity, provides
a powerful proxy for migration rates27. Consequently, spatially struc-
tured eco-evolutionary feedback dynamicsmay emerge, with diversity
accumulating in thewell-connectedpopulations. In linewith this, there
is evidence of spatial structure strongly influencing how resistance is
distributed, with higher resistance observed in host populations that
experience higher rates of gene flow16,28,29. To date, it has not been
established what the relative roles of gene flow vs. pathogen-imposed
selection are—and how they may vary in space—in generating spatially
variable patterns of resistance that have been empirically
observed16,28,29.

Here, we combine a spatial analysis of wild host-pathogen popu-
lations with an inoculation experiment, and a simulation model to
understand how the ecological and evolutionary impacts of disease on
host resistance vary in spatially structured populations. Specifically,
we ask: (1) Is there evidence of pathogen-imposed selection on its host
populations across a large, naturally fragmented host-pathogen
metapopulation; (2) Does host population resistance structure, mea-
sured through an inoculation assay, reflect variable selection pressure
indicated by the spatial analysis; and (3) Using a coevolutionary
metapopulationmodel we explore howgene flow, selection, and costs
of resistance contribute to the spatial structure of resistance detected
with our empirical approach.

Our analysis is focused on annually recorded population size data
(measured visually as coverage; m2) from some ~4000 locations of
host plant Plantago lanceolata, and the presence-absence dynamics of
its obligate fungal pathogen, Podosphaera plantaginis, in this host
population network in the Åland islands, South-Western Finland.
Plantago lanceolata is a perennial that produces wind-dispersed pol-
len, while seeds typically drop close to the mother plant. During the
epidemic season, P. plantaginis disperses via clonally produced con-
idial spores that typically land within close proximity of the infected
source plant16. The visually conspicuous symptoms caused by P.
plantaginis enable accurate tracking of infection in thewild. Long-term
epidemiological data have demonstrated this pathogen to occur as a
highly dynamic metapopulation with frequent extinctions and (re)
colonizations of local populations, typically persisting in any given
host population only for a few years16. The host population spatial
structure is a critical determinant of pathogen extinction-colonization
dynamics: large host populations aremore likely to become colonized

and to sustain inifection16. In contrast to predictions of the metapo-
pulation theory27, host population connectivity has a negative impact
on pathogen colonization and persistence, suggesting these popula-
tions to vary in their suitability for the pathogen16. The host population
network does not occur as ametapopulation30, but is characterized by
strong fluctuations in population size31,32. These data allow us to study
whether the extent of pathogen-imposed selection depends on host
population connectivity (SH) and hence, evolutionary potential gov-
erned by gene flow, and whether resistance level and diversity vary
among host populations depending on their degree of connectivity
and disease history. Previous metapopulation models33,34 have
demonstrated the existence of overall higher resistance in well-
connected populations. To better understand the mechanisms that
lead to the significant interaction between population connectivity,
infection history and resistance in our inoculation study, we built a
host-pathogen coevolutionary metapopulation model, where we
examine how different trade-off relationships impact the outcome.

Jointly our results show that the strength of pathogen-imposed
selection depends on host population spatial structure. Low disease
resistance in the isolated populations renders them vulnerable to
pathogen attack. In the well-connected host populations high rates of
gene flow associate with high resistance diversity irrespective of
population disase history.

Results
Spatio-temporal analysis of host population growth
We used Spatial Bayesian modelling (Integrated Nested Laplace
Approximation; INLA35) to assess how changes in host population size
are influenced by the pathogen. We analyzed the relative change in
host population size (m2) (defined as population size (t) − population
size (t−1))/population size (t−1)) between consecutive years utilizing
data from2001 to 2008, i.e., eight transitions in host population size in
response to pathogen presence–absence status at t−1. To assess
whether this depends on host population connectivity, we estimated
the separate effects of pathogen presence/absence in the previous
year for connectivity categories—high-, low, and intermediate—that
were based on the0.2 and0.8 quantiles of the host-connectivity values
(Supplementary Fig. 1). Earlier studies havedemonstrated P. lanceolata
populations in Åland to be sensitive to drought31,32 and hence, to reli-
ably estimate the effect of the pathogen on host population growth
rates, we included data on precipitation and field-estimated drought
symptoms in our model. The model also controls for spatio-temporal
autocorrelation characteristic of spatial ecological data, that may be
due to unmeasured variables (e.g., habitat quality, prevailing wind-
direction or other unmeasured biotic of abiotic variation), thereby
providing a conservative estimate of the model parameters (Supple-
mentary Table 1)35.

Infection by P. plantaginis had a negative effect on the growth of
its host populations. Across all connectivity categories, the estimated
mean effects of pathogen presence on host population growth were
smaller than the effects with pathogen absence, suggesting an overall
negative effect of the pathogenonhost-population change (Fig. 1A and
Supplementary Table 1). Furthermore, the estimated mean effects of
the pathogen within the connectivity categories supports the inter-
pretation that the relative effect of the pathogenonpopulation growth
is most negative in the isolated host populations (Fig. 1A and Supple-
mentary Table 1). The posterior uncertainty in the effects of pathogen
on the population growth (indicated by the confidence intervals in
Fig. 1A) are due to the nature of observational data: pathogen infec-
tions were rare at themetapopulation level in studied years, thus there
is considerably more pathogen absence observations in these data
(See Supplementary Table 2). The temporal autocorrelation in growth
in P. lanceolata populations between consecutive years was estimated
to be negative (Supplementary Table 1), indicating that local popula-
tions exhibit oscillatory dynamics, such that growth in one year is
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typically followed by a decline in the next year and vice versa. As many
of the populations are well-established, these fluctuations could result
from populations oscillating around their carrying capacities, dictated
by the space and resources available for their growth. The estimated
median effects for rainfall in July and August suggest that host popu-
lation changes are not strongly driven by these effects, although the
August rainfall had a slight positive effect on population growth
(posterior mean effect 0.03, confidence interval −0.06, 0.12, Fig. 1B,
Supplementary Table 1). The proportion of plants expressing drought
symptoms in the previous year was significantly associated with a
decline in host population size (posterior mean effect −0.38, con-
fidence interval −0.43, −0.33, Fig. 1C, Supplementary Table 1).

Inoculation assay quantifying host resistance phenotypes
To examine whether the diversity and level of resistance vary among
host populations depending on their degree of connectivity (SH) and
disease history (measured as infection status in years 2001–2014), we

performed an inoculation assay to characterize resistance phenotypes
in plants sampled from 19 natural P. lanceolata populations. These
populations occur in different locations of the host network, and were
selected to represent both isolated and well-connected populations.
Each plant was inoculated with four strains of P. plantaginis yielding
resistance phenotypes values ranging between 0000 and 1111, with
one depicting a resistant response and zero a susceptible response
(the 16 possible resistance phenotype profiles are shown on the x-axis
in Fig. 2A). Our inoculation study confirmed that host plants varied in
their resistance against the tested powderymildew strains (Table 1 and
Fig. 2A). We were able to identify all 16 possible resistance phenotypes
in the sample of 190 plants (Fig. 2A). In the connected populations, we
found a greater diversity of different phenotypes, while isolated
populations hosted fewer resistance phenotypes (Fig. 2A). Both the
Shannon diversity index (Table 1 and Fig. 2B), and the average level of
resistance (Table 1 and Fig. 2C), were higher in thewell-connected than
in the isolated host populations (Table 1 and Fig. 2B, C).

Fig. 1 |Model estimated effects onPlantago lanceolatapopulation size changes
in the Åland islands in 2001–2008, based on N = 24042 field observations. The
estimatedmedian effects for host population growth with 95% credibility intervals,
shown with lines, of the fixed effects of the Bayesian INLA model: A The effect of
pathogen presence and absence in the host populations in the three connectivity
categories, B the effect of rainfall in July and August; and C the effect of detected

drought symptoms in the host populations in the previous and current year. In the
model the relative change in host population size (m2) is defined as population size
(t) − population size (t−1))/population size (t−1)) between consecutive years uti-
lizing data from2001 to 2008 in response to pathogen presence-absence status at t
−1. Source data are provided as a Source Data file.
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However, while disease history had no direct effect on phe-
notypic diversity nor the level of resistance, we found a significant
interaction between population connectivity and infection history
for both Shannon’s diversity index and level of resistance (Table 1
and Fig. 2B, C). The highest diversity of phenotypes and highest
resistance was measured in well-connected populations without
any history of disease. In contrast, in isolated populations,
we found greater diversity of resistance phenotypes and
higher resistance in populations with a history of infection
(Fig. 2B, C).

The metapopulation model
Wemodelled both the ecological and coevolutionary dynamics of host
and pathogen metapopulations by constructing the network in two
stages to account for relatively well and poorly connected demes (see
“Methods”).Wemodelled the geneticsof the systemusing amultilocus
gene-for-gene framework36 with haploid host and pathogen genotypes
characterized by L biallelic loci, where 0 and 1 represent the presence

and absence, respectively, of resistance and infectivity alleles. Hosts
andpathogenwithmore resistance or infectivity alleles are assumed to
pay higher fitness costs, as defined in the methods. We ran 200 sto-
chastic simulations using the tau-leap method37 for each of the para-
meter sets described in Supplementary Table 3 (example simulation
dynamics are shown in Fig. 3D–F). On average, disease prevalence (D),
resistance (R), and infectivity (I) were always higher in well-connected
than in poorly connected populations regardless of metapopulation
structure, transmissibility of the pathogen, or the nature of the trade-
offs (Supplementary Table 3). However, the difference between well
and poorly connected populations was generally greater when: (1) the
metapopulation structure was assortative (i.e., well connected popu-
lations are more likely to be connected to other well connected
populations than by chance) than random; (2) the pathogen was more
transmissible; or (3) host resistance was associated with fitness costs
that diminish as resistance increases (i.e., costs of resistance decele-
rate, c2H < 0) (Supplementary Table 4). Overall, we found that the
pattern of the empirical results shown in Fig. 2C was most likely to

Fig. 2 | Resistance ofPlantago lanceolata populations depends on connectivity
(SH) and disease history. The phenotype composition of the19 study populations
was defined by individual plant (n = 10 per population) responses to the four
pathogen strains, resulting in a total ofN = 190 observations visualized in panel (A).
The matrix of detected resistance phenotypes in the inoculation study shows
clustering of similar phenotypic profiles detected in populations in each of the four
connectivity (SH)–infection history categories. The columns of the matrix corre-
spond to resistance phenotypes, where the i’th element of the vector is 1, if resis-
tance to pathogen strain I was detected, and zerootherwise. The rows of thematrix
encode the observed frequencies of resistance phenotypes within the studied
populations. The dendrogram visualizes the similarity structure between the

populations, distance along the tree encoding for the degree of similarity between
the populations. It is based on a hierarchical clustering (implemented with com-
plete linkage method, aiming to find similar clusters), applied to Euclidean dis-
tances between the phenotype profiles within the populations. In panel B the
diversity of detected 16 resistance phenotypes for the 19 study populations was
characterizedwith a Shannondiversity indexofhost populations, shown separately
for each connectivity (SH)-disease history category, andC the average resistance (%)
of the same populations in each category. The centre lines of the boxplots
B, C show the medians, box limits show the 25 and 75% quantiles, and the whiskers
span to the data extremes. Purple colours depict isolated populations, and green
colourswell-connected populations. Source data are provided as a SourceData file.
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occur when host resistance is associatedwith diminishing fitness costs
and is more likely for transient (Fig. 3B) than long-term dynam-
ics (Fig. 3C).

Discussion
Here, we show that the negative effect of pathogens on their wild host
populations depends on spatial structure. This finding suggests that
the strength of pathogen-imposed selectionmay vary across space in a
predictable manner. Overall, finding a consistent negative effect of
infection on host population growth is noteworthy given the myriad
ecological factors that may hamper our ability to quantify costs of
infection in wild populations38. The effect of infection on host popu-
lation growth was the least negative in well-connected host popula-
tions, while isolated host populations were most vulnerable to
infection, suggesting that they lack resistance diversity to effectively
counter pathogen attack. Indeed, results of the inoculation study
confirmed that both the diversity and the average level of resistance
were higher in the well-connected than in the isolated host popula-
tions. When the interaction is characterized by strain-specific resis-
tance such as in the interaction between P. lanceolata and P.
plantaginis, resistance diversity will reduce the probability of estab-
lishment by an immigrant pathogen strain, and slow down the spread
of established strains due to a mismatch between the specific aviru-
lence alleles of pathogen and resistance alleles of host39. In agriculture,

even slight additions of diversity tomonocultures have been shown to
reduce disease levels significantly40,41.

Theory predicts that pathogens maintain resistance polymorph-
ism in their host populations42–44. As described above, our spatial sta-
tistical population model demonstrated that the isolated populations
went through the strongest reductions in size—most likely through
increased mortality of infected individuals31—which could lead to
selection increasing in the frequency of resistant phenotypes locally32.
Accordingly, in the isolated populations we measured higher resis-
tance diversity in host populations with a history of infection than in
host populations that had not been infected in the past. The effect of
infection on host population growth rates in the well-connected
populations wasmuchweaker, and hence,may explain why we did not
detect signs of past selection in these populations. Moreover, high
rates of gene flow into the well-connected populations may swamp
signatures of pathogen-imposed selection. The resulting differences in
resistance among host populations is in line with previous studies that
have measured higher resistance levels in well-connected host
populations16,28,29. Jointly our results reveal that this pattern is gener-
ated by eco-evolutionary feedback resulting fromspatial differences in
how gene flow vs. selection drive host-pathogen dynamics in the wild.
In well-connected populations, gene flow appears more important
than pathogen-imposed selection in maintaining resistance diversity.
In support of gene flow varying according to population connectivity,
we found that population growth rates were lower in the intermediate-
and low-connectivity host populations than in the well-connected host
populations also in the absence of the pathogen. This suggests that
increasing population isolation may also have other genetic con-
sequences, such as lower genetic diversity and higher inbreeding
depression, both of which may impact population growth rates45,46.

In theory, polymorphism in resistance within populations is
maintained by costs of resistance in the absence of the pathogen,
whereas under pathogen attack, the resistant hosts outperform the
susceptible ones4. Hence, finding high levels of resistance diversity
where pathogen impact has recently been negligible may appear
contrary to expectations, and suggests dispersal to be critical for
maintaining variation within host populations. Our metapopulation
model explored scenarios under which spatial structure, disease
dynamics, and life-history trade-offs could yield similar outcomes. We
find that the shape of the host trade-off was the critical predictor of
whether the simulations would qualitatively match the empirical
results. Our results suggest that the costs of resistance are most likely
to diminish as resistance increases. Diminishing costs mean that there
is an initial large cost associated with resistance and therefore it is less
beneficial when disease is rare. While fitness costs associated with
resistance have beenwidely observed, determining the shape of trade-
offs from empirical data is challenging, especially when trade-offs are
close to linear or vary with environment, and it is impossible to
determine trade-off shapes when only two host phenotypes are com-
pared (as is often the case). However, experimental evolution of bac-
teria and phages has demonstrated that decelerating costs of
resistance are possible4. In addition, our simulations suggest that the
pattern detected in the empirical results ismost likely to occur prior to
the system reaching equilibrium and when metapopulation con-
nectivity is assortative. The fact that the transient simulations
dynamics tend to provide a better qualitative match to the empirical
results does not imply that the resistance patterns detected in the
archipelago will necessarily fade in the long-term (many simulations
were qualitative matches at equilibrium), although our model indi-
cates that this is a possibility.We think that it is interesting to note that
the patterns we see are found for a wider range of parameter values
under transient dynamics, but we get the same inference of the key
characteristics that lead to the patterns we see. Whether or not the
patterns are only transient is an empirical question.

Table 1 | The effects and effect sizes of connectivity and dis-
ease history on resistance diversity (Shannon diversity), and
the average level of resistance in the 19 studied Plantago
lanceolata populations

Source (Shannon diversity) d.f. F P

Connectivity 1 14.95 0.001

Disease history 1 1.61 0.2

Connectivity × disease history 1 7.68 0.01

Shannon diversity
coefficients

Estimate sd.

Intercept 1.85 0.13

History (infected) −0.18 0.18

Connectivity (isolated) −0.93 0.19

History (Infected) * con-
nectivity (isolated)

0.76 0.27

Source (resistance) d.f. X² P

Connectivity 1 16.55 <0.0001

Disease history 1 0.01 0.9

Connectivity × disease history 1 9.91 0.001

Mildew strain 3 36.34 <0.0001

Random Variance sd.

Population 0.227 0.477

Sample (population) 1.206 1.09

Resistance fixed effects Estimate sd.

Intercept 0.5 0.34

Connectivity (isolated) −2.67 0.53

History (infected) −0.95 0.44

Mildew_strain2 −0.86 0.27

Mildew_Strain3 −0.6 0.26

Mildew_strain4 0.65 0.25

History (infected) * con-
nectivity (isolated)

2.17 0.69

Significant values are highlighted in bold.
The model fit for generalized linear mixed effect model was assessed using chi-square tests on
the log-likelihood values to compare different models and significant interactions. Statistics for
minimum adequate models with smallest AIC values are reported.
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Together, our results show how spatial fragmentation leading
to the isolation of host populations drives the loss of diversity and
increases host vulnerability to infectious diseases. By combining
field population data with a controlled inoculation assay and a
simulationmodel we demonstrate how spatial structure generates
variation in the strength of pathogen-imposed selection, and
thus provides a compelling example of how landscape fragmen-
tation drives epidemiological and coevolutionary processes in
nature.

Methods
The pathosystem
Plantago lanceolata L. is a perennial monoecious ribwort plantain
that reproduces both clonally via the production side rosettes, and
sexually via wind pollination. Seeds drop close to the mother plant
and usually form a long-term seed bank47. Podospharea plantaginis
(Castagne; U. Braun and S. Takamatsu) (Erysiphales, Ascomycota) is
an obligate biotrophic powdery mildew that infects only P. lanceo-
lata and requires living host tissue through its life cycle48. It com-
pletes its life cycle as localized lesions on host leaves, only the
haustorial feeding roots penetrating the leaf tissue to feed nutrients
from its host. Infection causes significant stress for host plant and
may increase the host mortality31. The interaction between P. lan-
ceolata and P. plantaginis is strain-specific, whereby the same host
genotype may be susceptible to some pathogen genotypes while
being resistant to others49. The putative resistance mechanism
includes two steps. First, resistance occurs when the host plant first
recognizes the attacking pathogen and blocks its growth. When the
first step fails and infection takes place, the host may mitigate

infection development. Both resistance traits vary among host
genotypes49.

Approximately 4000 P. lanceolata populations form a network
covering an area of 50 × 70 km in the Åland Islands, SW of Finland.
Disease incidence (0/1) in these populations has been recorded
systematically every year in early September since 2001 by
approximately 40 field assistants, who record the occurrence of the
fungus P. plantaginis in the local P. lanceolata populations30. At this
time, disease symptoms are conspicuous as infected plants are
covered by white mycelia and conidia. The coverage (m2) of P.
lanceolata in the meadows was recorded between 2001 and 2008
and is used as an estimate of host population size. In the field survey
two technicians estimate Plantago population size by visually esti-
mating how much ground/other vegetation P. lanceolata foliage
covers (m2) in each meadow. The proportion of P. lanceolata plants
in each population suffering from drought is also estimated
annually in the survey. Data on average rainfall (mm) in July and
August was estimated separately for each population using detailed
radar-measured rainfall (obtained by Finnish Meteorological Insti-
tute) and it was available for years 2001–2008.

Host population connectivity (SH)27 for each local population i
was computed with the formula that takes into account the area of
host coverage (m²) of all host populations surveyed, denoted with
(Aj), and their spatial location compared to other host populations.
We assume that the distribution of dispersal distances from a
location are described by negative exponential distribution. Under
this assumption, the following formula (1) quantifies for a focal
population i, the effect of all other host populations, taking into
account their population sizes and how strongly they are connected

Fig. 3 |Metapopulation simulation results. A Example snapshot of the simulation
dynamics at t = 10,000 across a metapopulation with assortative connectivity,
highlighting well (green) and poorly (purple) connected populations (unshaded
populations are neither well nor poorly connected) that are currently infected
(squares) and uninfected (circles). The size of each node corresponds to the mean
resistance of the local population. Proportion of simulations which qualitatively
match the empirical results as the shape of the host and pathogen cost functions
are varied for transient (B) and long-term (C) dynamics: (strong decel.

(decelerating): c2H , c
2
P = � 10; weak decel.: c2H , c

2
P = � 3; weak accel. (accelerating):

c2H , c
2
P = 3; strong accel.: c

2
H , c

2
P = 10).D–F Example simulation results, showingmean

(bold line) and standard deviations (shading) for disease prevalence, i.e., propor-
tion of infected hosts (D), resistance (E), and infectivity, i.e., the average proportion
of loci with infectivity alleles in the parasite population (F) in well (green) and
poorly (purple) connected populations (c2H = � 3, c2P = 10, β=0:01, with assortative
network structure). Fixed parameters as defined in Supplementary Table 3.

Article https://doi.org/10.1038/s41467-022-33665-3

Nature Communications |         (2022) 13:6018 6



through immigration to it:

SHi =
X
j≠i

e�αdij

ffiffiffiffiffi
Aj

q
: ð1Þ

here, dij is the Euclidian distance between populations i and j and 1/α
equals themeandispersal distance, whichwas set to be twokilometres
based on results from a previous study16.

The annual survey data has demonstrated that P. plantaginis
infects annually 2–16% of all host populations and persists as a highly
dynamic metapopulation through extinctions and re-colonizations of
local populations16. The number of host populations has remained
relatively stable over the study period49. The first visible symptoms of
P. plantaginis infection appear in late June as white-greyish lesions
consisting of mycelium supporting the dispersal spores (conidia) that
are carried bywind to the sameor newhost plants. Six to eight clonally
produced generations follow one another in rapid succession, often
leading to local epidemic with substantial proportion of the infected
hosts by late summer within the host local population. Podosphaera
plantaginis produces resting structures, chasmothecia, that appear
towards the end of growing season in August–September31. Between
20% and 90% of the local pathogen populations go extinct during the
winter, and thus the recolonization events play an important role in the
persistence of the pathogen regionally16.

Inoculation assay: Effect of connectivity and disease history on
phenotypic disease resistance
Host and pathogen material for the experiment. To examine whe-
ther the diversity and level of resistance vary among host populations
depending on their degree of connectivity (SH) and disease history, we
selected 20 P. lanceolata populations for an inoculation assay. These
populations occur in different locations in the host network, and were
selected basedon their connectivity values (S H of selected populations
was 37–110 in isolated and 237–336 in highly connected category,
Fig. 1). We did not include host populations in the intermediate con-
nectivity category that was used in the population dynamic analyses in
the inoculation assay due to logistic constraints. Podosphaera planta-
ginis is an obligate biotrophic pathogen that requires living host tissue
throughout its life cycle, and obtaining sufficient inoculum for
experiments is extremely time and space consuming. In both isolated
and highly connected categories, half of the populations (IDs 193, 260,
311, 313, 337, 507, 1821, 1999, 2818 and 5206) were healthy during the
study years 2001–2014, while half of the populations (IDs 271, 294,
309, 321, 490, 609, 1553, 1556, 1676 and 1847) were infected by P.
plantaginis for several years during the same period. We collected P.
lanceolata seeds from randomly selected ten individual plants around
the patch area from each host population in August 2014.

To acquire inoculum for the assay, we collected the pathogen
strains as infected leaves, one leaf from ten plant individuals from four
additional host populations (IDs 3301, 4684, 1784, and 3108) in August
2014. None of the pathogen populations were same as the sampled
host populations and hence, the strains used in the assay all represent
allopatric combinations. Both host and pathogen populations selected
for the study were separated by at least two kilometres. The collected
leaves supporting infection were placed in Petri dishes on moist filter
paper and stored at room temperature until later use.

Seeds from tenmother plants from each population were sown in
2:1 mixture of potting soil and sand, and grown in greenhouse condi-
tions at 20 ± 2 °C (day) and 16 ± 2 °C (night) with 16:8 L:D photoperiod.
Due to the low germination rate of collected seeds, population 260
(isolated and healthy population) was excluded from the study.
Seedlings of ten different mother plants were randomly selected
among the germinatedplants for eachpopulation (n = 190), and grown
in individual pots until the plants were eight weeks old.

The pathogen strains were purified through three cycles of single
colony inoculations andmaintained on live, susceptible leaves on Petri
dishes in a growth chamber 20 ± 2 °C with 16:8 L:D photoperiod. Every
two weeks, the strains were transferred to fresh P. lanceolata leaves.
Purified powdery mildew strains (M1–M4), one representing each
allopatric population (3301, 4684, 1784 and 3108), were used for the
inoculation assay. To produce enough sporulating fungal material,
repeated cycles of inoculations were performed before the assay.

Inoculation assay quantifying host resistance phenotypes. In order
to study how the phenotypic resistance of hosts varies depending on
population connectivity and infection history, we scored the resis-
tance of 190 host genotypes, ten individuals from each study popu-
lations (n = 19), in an inoculation assay. Here, one detached leaf from
each plant was exposed to a single pathogen strain (M1–M4) by
brushing spores gently with a fine paintbrush onto the leaf. Leaves
were placed on moist filter paper in Petri dishes and kept in a growth
chamber at 20 ± 2 with a 16/8D photoperiod. All the inoculations were
repeated on two individual Petri plates, leading to 760host genotype—
pathogen genotype combinations and a total of 1520 inoculations (19
populations * 10 plant genotypes * 4 pathogen strains * 2 replicates).
We then observed and scored the pathogen infection on day 12 post
inoculation, under dissecting microscope. The resulting plant pheno-
typic response was scored as 0 = susceptible (infection) when myce-
lium and conidia were observed on the leaf surface, and as 1 =
resistance (no infection), when no developing lesions could be
detected under a dissecting microscope. A genotype was defined
resistant only if both inoculated replicates showed similar response (1),
and susceptible if one or both replicates became infected (0).

Statistical analyses
Bayesian spatio-temporal INLA model of the changes in host
population size. To study how the pathogen infection influences on
host population growth, we analyzed the relative change in host
population size (m2) (defined as population size (t) − population size (t
−1))/population size (t−1)) between consecutive years utilizing data
from2001 to 2008 in response to pathogenpresence-absence status at
t−1 (Supplementary Table 2). To assess whether this depends on host
population connectivity, we estimated the separate effects of patho-
gen presence/absence in the previous year for connectivity categories
—high-, low, and intermediate—that were based on the 0.2 and 0.8
quantiles of the host-connectivity values (Fig. 1A and Supplementary
Figs. 1, 2). This allowed us to directly assess and compare the effect of
the pathogen on host population growth in the extreme categories
between isolated and highly connected host populations which were
represented in the sampling for the inoculation study (Fig. 2).

As covariates, we included the proportion (0–100%) of dry host
plants measured each year within each local population as well as data
on the amount of rainfall at the summer months (June, July, and
August) obtained from the satellite images, as thesewere suggested be
relevant for this pathosystem in an earlier analysis16. Observations
where the change in host population size, or the host population
coverage had absolute values larger than their 0.99 quantiles in the
whole data, were regarded as outliers and omitted from the analysis.
Before the analyses, all the continuous covariates were scaled and
centred, and the categorical variables were transformed into binary
variables.

The relative changes in local host population size between con-
secutive years was analyzed by a Bayesian spatio-temporal statistical
model that simultaneously considers the effects of a set of biologically
meaningful predictors. The linear predictor thus consists of two parts
(2,3):

βXt + ztAt ð2Þ
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where β represents the correlation coefficients corresponding to the
effects of environmental covariates, zt corresponds to the spatio-
temporal random effect, and Xt and At project these to the observa-
tion locations. For zt we assume that the observations from a location
in consecutive time points (t−1) and t are described by 1st order
autoregressive process:

zt =φzt�1 +wt ð3Þ

where wt corresponds to spatially structured zero-mean random
noise, for which a Matern covariance function is assumed. Statistical
inference then targets jointly the covariate effects β, the temporal
autocorrelation φ, and the hyperparameters describing the spatial
autocorrelation inwt. From these the overall variance, aswell as spatial
range—a distance after which spatial autocorrelation ceases to be
significant—can be inferred (Supplementary Fig. 3). For more detailed
description of the structure of the statistical model and how to do
efficient inference with it using R-INLA, we refer to refs. 16,50.

Identificationof resistancephenotypes. Thephenotype composition
of each study population was defined by individual plant responses to
the four pathogen strains, where each response could be “susceptible
= 0” or “resistant = 1”. For example, a phenotype “1111” refers to a plant
resistant to all four pathogen strains. The diversity of distinct resis-
tance phenotypes within populations was estimated using the Shan-
non diversity index as implemented in the vegan software package51.
The Shannon diversity index for all four study groups was then ana-
lyzed using a linear model with class predictors population type (well-
connected or isolated), infection history (healthy or infected), and
their interaction.

Analysis of population connectivity and infection history effects on
host resistance. To test whether host population resistance varied
depending on connectivity (SH) and infection history, we analyzed the
inoculation responses (0 = susceptible, 1=resistant) of each host-
pathogen combination by using a logitmixed-effect model in the lme4
package52. The model included the binomial dependent variable
(resistance-susceptible; 1/0), and class predictors population type
(well-connected or isolated), infection history (healthy or infected),
mildew strain (M1, M2, M3, and M4) and their interactions. Plant
individual and population were defined as random effects, with plant
genotype (sample) hierarchically nested under population. Model fit
was assessed using chi-square tests on the log-likelihood values to
compare different models and significant interactions, and the best
model was selected based on AIC-values. P-values for regression
coefficients were obtained by using the car package53. We ran all the
analyses in R software54.

The metapopulation model
We model the ecological and co-evolutionary dynamics of host and
pathogen metapopulations to understand key features of the experi-
mental system that impact on the qualitative patterns observed. The
structure and parameters in our model are therefore not estimated
using experimental data, but rather are chosen to cover a range of
possibilities (e.g., low vs high transmission rates, variation in trade-off
shapes for fitness costs). We construct the metapopulations in two
stages to account for relatively well and poorly connected demes. All
demes are identical in quality (i.e., no differences in intrinsic birth or
death rates between demes) and only differ in their connectivity. Our
metapopulation consists of an outer network of 20 demes, equally
spaced around the unit square (0.2 units apart), and a 7×7 inner lattice
of demes at a minimum distance of 0.2 units from the outer network
(Fig. 3A), giving a total of 69 demes. Demes that are separated by a
Euclidean distance of at most 0.2 are then connected to each other.
Thismeans that populations near the centreof themetapopulation are

highly connected, while those on the boundary of the metapopulation
are poorly connected. This also has the effect of making connections
betweenwell andpoorly connecteddemes assortative (i.e.,well/poorly
connected demes tend to be connected to well/poorly connected
demes). We relax the assumption of assortativity in a second type of
network by randomly reassigning connections between demes, while
maintaining the same degree distribution. (i.e., the probability of two
demes being connected is proportionate to their degree). While well
connected demes still havemore connections to other well connected
demes than to poorly connected demes, they are notmore likely to be
connected to a well connected deme than by chance based on the
degree distribution. In both types of network structure, we classify a
demeaswell-connected if it is in the top 20%of the degree distribution
and poorly connected if it is in the bottom 20%.

We model the genetics using a multilocus gene-for-gene frame-
work with haploid host and pathogen genotypes characterized by L
biallelic loci, where 0 and 1 represent the presence and absence,
respectively, of resistance and infectivity alleles. Host genotype i and
pathogen genotype j are represented by binary strings: x1

i x
2
i . . . x

L
i and

y1j y
2
j . . . y

L
j . Resistance acts multiplicatively such that the probability of

host i being infected when challenged by pathogen j isQij = σ
dij , where

σ is the reduction in infectivity per effective resistance allele and
dij =

PL
k = 1x

k
i

�
1� ykj

�
is the number of effective resistance alleles (i.e.,

the number of loci where hosts have a resistance allele but pathogens
do not have a corresponding infectivity allele). Hosts and pathogens
with more resistance or infectivity alleles are assumed to pay higher
fitness costs, cH ið Þ eq. (4) and cP jð Þ eq. (5) with:

cH ið Þ= c1H
1� e

c2
H
L

PL

k = 1
xki

1� ec
2
H

0
B@

1
CA ð4Þ

and

cP jð Þ= c1P
1� e

c2
P
L

PL

k = 1
ykj

1� ec
2
P

0
B@

1
CA ð5Þ

where 0< c1H , c
1
P ≤ 1 control the overall strength of the costs (i.e., the

maximum proportional reduction in reproduction (hosts) or trans-
mission rate (pathogens)) and c2H , c

2
P 2 R≠0 control the shape of the

trade-off. When c2H , c
2
P <0 the costs decelerate (increasing returns) and

when c2H , c
2
P >0 the costs accelerate the costs accelerate (decreasing

returns) (Supplementary Fig. 4). This formulation, therefore, allows for
a wide-range of trade-off shapes that may occur in nature.

The dynamics of the (finite) host and pathogen populations are
modelled stochastically using the tau-leap method with a fixed step
size of τ = 1. For populationp, themeanhostbirth rate at time t for host
i (6) is

Bp
i tð Þ= a 1� cH ið Þ� �� qNp tð Þ

� �
Spi tð Þ ð6Þ

where a is the maximum per-capita birth rate, q is the strength of
density-dependent competition on births, Np tð Þ= Spi tð Þ+ Ipi� tð Þ is the
local host population size, Spi tð Þ and Ipi� tð Þ=Pn

j = 1I
p
ij tð Þ are the local sizes

of susceptible and infected individuals of genotype i, and Ipij tð Þ is the
local size of hosts of genotype i infectedby pathogen j. Hostmutations
occur at an average rate of μH per loci (limited to atmost onemutation
per time step), so that themean number of mutations from host type i
to i0 is μHmii0B

p
i tð Þ, where mii0 = 1 if genotypes i and i0 differ at exactly

one locus, and is 0 otherwise.
The mean local mortalities for susceptible and infected indivi-

duals are bSpi tð Þ and b+αð ÞIpij tð Þ, respectively, where b is the natural
mortality rate and α is the disease-associated mortality rate. The
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average number of infected hosts that recover is γIpij tð Þ, where γ is the
recovery rate.

Themean number of new local infections of susceptible host type
i by pathogen j eq. (7) is:

INFp
ij tð Þ= β 1� cP jð Þ� �

QijS
p
i tð ÞYp

j tð Þ ð7Þ

where β is the baseline transmission rate and Yp
j tð Þ is the local number

of pathogen propagules following mutation and dispersal. Pathogen
mutations occur in a similarmanner to hostmutations, withmutations
from type j to j0 occurring at rate μPmjj0 I

p
�j tð Þ where μP is the mutation

rate per loci (limited to at most one mutation per timestep) and
Ip�j tð Þ=

Pn
i = 1I

p
ij tð Þ is the local number ofpathogen j: Followingmutation,

the local number of pathogens of type j eq. (8) is:

Wp
j tð Þ= Ip�j tð Þ 1� μPL

� �
+μPmjj0 I

p
�j tð Þ ð8Þ

Pathogen dispersal occurs following mutation at a rate of ρ
between connected demes, given by the adjacencymatrix Gpr , with Gp

the total number of connections for demep. Themean local number of
pathogen propagules following mutation and dispersal eq. (9) is
therefore:

Yp
j tð Þ=Wp

j tð Þ 1� ρGp

� �
+ρ

XM

r = 1

GprW
r
j tð Þ ð9Þ

We focus our parameter sweep on: (i) the structure of the network
(assortative or random connections); (ii) the strength c1H , c

1
P

� �
and

shape c2H , c
2
P

� �
of the trade-offs; (iii) the transmission rate βð Þ; and (iv)

the dispersal rate ρð Þ, fixing the remaining parameters as described in
Supplementary Table 1 (preliminary investigations suggested they had
less of an impact on the qualitative outcome) and conducting
100 simulations per parameter set. For each simulation we initially
seed all populations with the most susceptible host type and place the
least infective pathogen type in one of the well-connected populations
tominimize the risk of early extinction.We then solve the dynamics for
10,000 time steps (preliminary investigations indicated this was a
sufficient period for the metapopulations to reach a quasi-equilibrium
in terms of overall resistance). We calculate the average level of
resistance (proportion of loci with a resistance allele) between time
steps 4001 and 5000 (transient dynamics) andover the final 1000 time
steps (long-term dynamics) for well and poorly connected demes,
categorized according to whether the disease is present in (infected)
or absent from (uninfected) the local population at a given time point
and discarding simulations where the pathogen is driven globally
extinct.

We compare the mean level of resistance in infected/uninfected
poorly/well-connected populations across all simulations to the
empirical results. We say that a simulation is a qualitative ‘match’ for
the empirical findings if: (i) in poorly connected demes, the infected
populations are on average at least 5% more resistant than uninfected
populations; and (ii) in well-connected demes, the uninfected popu-
lations are on average at least 5% more resistant than infected popu-
lations. In other words, if RCS is the mean resistance for a population
with connectivity C (C =W and C =P for well and poorly connected
demes, respectively) and infection status S (S=U and S= I for unin-
fected and infected populations, respectively), then a parameter set is
a qualitative ‘match’ for the empirical findings if RWU>1:05RWI and
1:05RPI > 1:05RPU . If these criteria are notmet, then theparameter set is
a qualitative ‘mismatch’ for the empirical findings. The model is not
intended to be a replica of an empirical metapopulation, but rather is
used to reveal the key factors which lead to qualitatively similar dis-
tributions of resistance and disease incidences observed in the study
of the Åland islands. Hence, the purpose of the model is to determine

which biological factors are likely to be crucial to the patterns
observed herein.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data underlying this study are available at https://github.com/
ComputerBlue/SpatialEcoEvoDynamics.55. Source data are provided
with this paper.

Code availability
Code for population growth model is available at https://github.com/
ComputerBlue/SpatialEcoEvoDynamics55 and code for the simulation
model is available at https://github.com/ecoevotheory/Hockerstedt_
et_al_202256.
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